motion-sensor/TSL2561.c

459 lines
13 KiB
C
Raw Normal View History

2021-10-17 13:44:59 +02:00
/**
* Copyright 2014 Dino Ciuffetti <dino@tuxweb.it>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include "TSL2561.h"
/**
* read two bytes from i2c bus getting a 16 bit unsigned integer
*/
static inline uint16_t tsl2561_read16(TSL2561 *sensor, uint8_t reg) {
uint16_t x;
if(sensor->adapter_fd == -1) { // not opened
// TODO: choose a valid errno error
sensor->lasterr = -1;
return 0;
}
// ask for reading
sensor->buf[0] = reg;
if(write(sensor->adapter_fd, sensor->buf, 1) != 1) {
sensor->lasterr = errno;
return -1;
}
if(read(sensor->adapter_fd, sensor->buf, 2) != 2) {
sensor->lasterr = errno;
return 0;
}
//printf("x1: 0x%0x, x2: 0x%0x\n", sensor->buf[1], sensor->buf[0]);
x = sensor->buf[1];
x <<= 8;
x |= sensor->buf[0];
//printf("test: 0x%02x%02x: 0x%04x\n", sensor->buf[1], sensor->buf[0], x);
return x;
}
/**
* read one byte from i2c bus getting a 8 bit unsigned integer
*/
static inline uint8_t tsl2561_read8(TSL2561 *sensor, uint8_t reg) {
uint8_t x;
if(sensor->adapter_fd == -1) { // not opened
// TODO: choose a valid errno error
sensor->lasterr = -1;
return 0;
}
// ask for reading
sensor->buf[0] = reg;
if(write(sensor->adapter_fd, sensor->buf, 1) != 1) {
sensor->lasterr = errno;
return -1;
}
if(read(sensor->adapter_fd, sensor->buf, 1) != 1) {
sensor->lasterr = errno;
return 0;
}
x = sensor->buf[0];
return x;
}
/**
* write one byte to i2c bus getting
*/
static inline int tsl2561_write8(TSL2561 *sensor, uint8_t reg, uint32_t byte_value) {
if(sensor->adapter_fd == -1) { // not opened
// TODO: choose a valid errno error
sensor->lasterr = -1;
return -1;
}
// we mask with (& 0xFF) to get the last 8 bits from a 32 bit unsigned integer
sensor->buf[0] = reg;
sensor->buf[1] = (byte_value & 0xFF );
if(write(sensor->adapter_fd, sensor->buf, 2) != 2) {
sensor->lasterr = errno;
return -1;
}
return 0;
}
// TSL2561 Functions (inspired on Adafruit_TSL2561_U.cpp at https://github.com/adafruit/Adafruit_TSL2561)
// wake up TSL2561 by setting the control bit
static inline int TSL2561_ON(TSL2561 *sensor) {
int rc;
if(sensor->adapter_fd == -1) { // not opened
// TODO: choose a valid errno error
sensor->lasterr = -1;
return -1;
}
rc = tsl2561_write8(sensor, TSL2561_COMMAND_BIT | TSL2561_REGISTER_CONTROL, TSL2561_CONTROL_POWERON);
return rc;
}
// turn TSL2561 into power saving mode
static inline int TSL2561_OFF(TSL2561 *sensor) {
int rc;
if(sensor->adapter_fd == -1) { // not opened
// TODO: choose a valid errno error
sensor->lasterr = -1;
return -1;
}
rc = tsl2561_write8(sensor, TSL2561_COMMAND_BIT | TSL2561_REGISTER_CONTROL, TSL2561_CONTROL_POWEROFF);
return rc;
}
// this is a private function that is used to get data from the sensor (infrared + full spectrum including infrared)
static inline int tsl2561_getdata(TSL2561 *sensor, uint16_t *full_spectrum, uint16_t *infrared) {
TSL2561_ON(sensor);
// wait for the internal ADC to complete conversion
switch(sensor->integration_time) {
case TSL2561_INTEGRATIONTIME_13MS:
usleep(20000);
break;
case TSL2561_INTEGRATIONTIME_101MS:
usleep(150000);
break;
case TSL2561_INTEGRATIONTIME_402MS:
usleep(450000);
break;
}
//usleep(450000);
// reads two bytes from channel 0 (full spectrum + infrared)
//*full_spectrum = wiringPiI2CReadReg16(_fd, TSL2561_COMMAND_BIT | TSL2561_WORD_BIT | TSL2561_REGISTER_CHAN0_LOW);
*full_spectrum = tsl2561_read16(sensor, TSL2561_COMMAND_BIT | TSL2561_WORD_BIT | TSL2561_REGISTER_CHAN0_LOW);
//fprintf(stdout, "got 0x%04X for full spectrum light\n", *full_spectrum);
// reads two bytes from channel 1 (infrared)
//*infrared = wiringPiI2CReadReg16(_fd, TSL2561_COMMAND_BIT | TSL2561_WORD_BIT | TSL2561_REGISTER_CHAN1_LOW);
*infrared = tsl2561_read16(sensor, TSL2561_COMMAND_BIT | TSL2561_WORD_BIT | TSL2561_REGISTER_CHAN1_LOW);
//fprintf(stdout, "got 0x%04X for ir light\n", *infrared);
// turn the device off to save power
TSL2561_OFF(sensor);
return 0;
}
/**
* converts the raw sensor values to the standard SI lux equivalent.
* returns 0 if the sensor is saturated and the values are unreliable.
*/
/**************************************************************************/
static uint32_t TSL2561_CALCULATE_LUX(TSL2561 *sensor, uint16_t broadband, uint16_t ir) {
unsigned long chScale;
unsigned long channel1;
unsigned long channel0;
uint16_t clipThreshold;
unsigned long ratio1 = 0;
unsigned long ratio;
unsigned int b, m;
unsigned long temp;
uint32_t lux;
// Make sure the sensor isn't saturated!
switch (sensor->integration_time) {
case TSL2561_INTEGRATIONTIME_13MS:
clipThreshold = TSL2561_CLIPPING_13MS;
break;
case TSL2561_INTEGRATIONTIME_101MS:
clipThreshold = TSL2561_CLIPPING_101MS;
break;
case TSL2561_INTEGRATIONTIME_402MS:
clipThreshold = TSL2561_CLIPPING_402MS;
break;
default:
clipThreshold = TSL2561_CLIPPING_402MS;
break;
}
// return 0 lux if the sensor is saturated
if ((broadband > clipThreshold) || (ir > clipThreshold)) {
return 0;
}
// get the correct scale depending on the intergration time
switch (sensor->integration_time) {
case TSL2561_INTEGRATIONTIME_13MS:
chScale = TSL2561_LUX_CHSCALE_TINT0;
break;
case TSL2561_INTEGRATIONTIME_101MS:
chScale = TSL2561_LUX_CHSCALE_TINT1;
break;
case TSL2561_INTEGRATIONTIME_402MS:
chScale = (1 << TSL2561_LUX_CHSCALE);
break;
default: /* No scaling ... integration time = 402ms */
chScale = (1 << TSL2561_LUX_CHSCALE);
break;
}
// scale for gain (1x or 16x)
if (!sensor->gain) chScale = chScale << 4;
// scale the channel values
channel0 = (broadband * chScale) >> TSL2561_LUX_CHSCALE;
channel1 = (ir * chScale) >> TSL2561_LUX_CHSCALE;
/* find the ratio of the channel values (Channel1/Channel0) */
if (channel0 != 0) ratio1 = (channel1 << (TSL2561_LUX_RATIOSCALE+1)) / channel0;
// round the ratio value
ratio = (ratio1 + 1) >> 1;
#ifdef TSL2561_PACKAGE_CS
if ((ratio >= 0) && (ratio <= TSL2561_LUX_K1C))
{b=TSL2561_LUX_B1C; m=TSL2561_LUX_M1C;}
else if (ratio <= TSL2561_LUX_K2C)
{b=TSL2561_LUX_B2C; m=TSL2561_LUX_M2C;}
else if (ratio <= TSL2561_LUX_K3C)
{b=TSL2561_LUX_B3C; m=TSL2561_LUX_M3C;}
else if (ratio <= TSL2561_LUX_K4C)
{b=TSL2561_LUX_B4C; m=TSL2561_LUX_M4C;}
else if (ratio <= TSL2561_LUX_K5C)
{b=TSL2561_LUX_B5C; m=TSL2561_LUX_M5C;}
else if (ratio <= TSL2561_LUX_K6C)
{b=TSL2561_LUX_B6C; m=TSL2561_LUX_M6C;}
else if (ratio <= TSL2561_LUX_K7C)
{b=TSL2561_LUX_B7C; m=TSL2561_LUX_M7C;}
else if (ratio > TSL2561_LUX_K8C)
{b=TSL2561_LUX_B8C; m=TSL2561_LUX_M8C;}
#else
if ((ratio >= 0) && (ratio <= TSL2561_LUX_K1T))
{b=TSL2561_LUX_B1T; m=TSL2561_LUX_M1T;}
else if (ratio <= TSL2561_LUX_K2T)
{b=TSL2561_LUX_B2T; m=TSL2561_LUX_M2T;}
else if (ratio <= TSL2561_LUX_K3T)
{b=TSL2561_LUX_B3T; m=TSL2561_LUX_M3T;}
else if (ratio <= TSL2561_LUX_K4T)
{b=TSL2561_LUX_B4T; m=TSL2561_LUX_M4T;}
else if (ratio <= TSL2561_LUX_K5T)
{b=TSL2561_LUX_B5T; m=TSL2561_LUX_M5T;}
else if (ratio <= TSL2561_LUX_K6T)
{b=TSL2561_LUX_B6T; m=TSL2561_LUX_M6T;}
else if (ratio <= TSL2561_LUX_K7T)
{b=TSL2561_LUX_B7T; m=TSL2561_LUX_M7T;}
else if (ratio > TSL2561_LUX_K8T)
{b=TSL2561_LUX_B8T; m=TSL2561_LUX_M8T;}
#endif
temp = ((channel0 * b) - (channel1 * m));
// do not allow negative lux value
if (temp < 0) temp = 0;
// round lsb (2^(LUX_SCALE-1))
temp += (1 << (TSL2561_LUX_LUXSCALE-1));
// strip off fractional portion
lux = temp >> TSL2561_LUX_LUXSCALE;
// Signal I2C had no errors */
return lux;
}
int TSL2561_SETINTEGRATIONTIME(TSL2561 *sensor, tsl2561IntegrationTime_t time) {
int rc;
if(sensor->adapter_fd == -1) { // not opened
// TODO: choose a valid errno error
sensor->lasterr = -1;
return -1;
}
TSL2561_ON(sensor);
rc = tsl2561_write8(sensor, TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, time | sensor->gain);
TSL2561_OFF(sensor);
if(rc == 0) {
sensor->integration_time = time;
//fprintf(stderr, "setting integration time: 0x%02x to 0x%02x\n", TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, time | sensor->gain);
return 0;
} else {
//fprintf(stderr, "Error setting integration time: 0x%02x to 0x%02x\n", TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, time | sensor->gain);
return -1;
}
return -1;
}
int TSL2561_SETGAIN(TSL2561 *sensor, tsl2561Gain_t gain) {
int rc;
if(sensor->adapter_fd == -1) { // not opened
// TODO: choose a valid errno error
sensor->lasterr = -1;
return -1;
}
TSL2561_ON(sensor);
rc = tsl2561_write8(sensor, TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, sensor->integration_time | gain);
TSL2561_OFF(sensor);
if(rc == 0) {
sensor->gain = gain;
//fprintf(stderr, "setting gain: 0x%02x to 0x%02x\n", TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, sensor->integration_time | gain);
return 0;
} else {
//fprintf(stderr, "Error setting gain: 0x%02x to 0x%02x\n", TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, sensor->integration_time | gain);
return -1;
}
return -1;
}
int TSL2561_OPEN(TSL2561 *sensor) {
char filename[20];
if(sensor->adapter_fd != -1) { // already opened
// TODO: choose a valid errno error
sensor->lasterr = -1;
return -1;
}
snprintf(filename, 20, "/dev/i2c-%d", sensor->adapter_nr);
if ((sensor->adapter_fd = open(filename, O_RDWR)) < 0) { // open the device file (requests i2c-dev kernel module loaded)
sensor->lasterr = errno;
return -1;
}
if (ioctl(sensor->adapter_fd, I2C_SLAVE, sensor->sensor_addr) < 0) { // talk to the requested device
sensor->lasterr = errno;
close(sensor->adapter_fd);
sensor->adapter_fd = -1;
return -1;
}
TSL2561_SETINTEGRATIONTIME(sensor, TSL2561_INTEGRATIONTIME_402MS);
TSL2561_SETGAIN(sensor, TSL2561_GAIN_16X);
/*
TSL2561_ON(sensor);
tsl2561_write8(sensor, 0x81, 0x11);
TSL2561_OFF(sensor);
*/
return 0;
}
void TSL2561_CLOSE(TSL2561 *sensor) {
if(sensor->adapter_fd != -1) {
close(sensor->adapter_fd);
sensor->adapter_fd = -1;
}
}
/**
* sense the ambient light. Returns 0 on success, -1 on errors.
* the parameter pointer fullspectrum is the quantity og light at full spectrum (including infrared)
* the parameter pointer infrared is the quantity of infrared light
* if autogain is 0 a single sensor reading is done with the gain and integration time previously selected by invoking
* the TSL2561_SETINTEGRATIONTIME() and TSL2561_SETGAIN() functions. It autogain is 1 and automatic gain adjustment alghoritm is used
*/
int TSL2561_SENSELIGHT(TSL2561 *sensor, uint16_t *full_spectrum, uint16_t *infrared, uint32_t *lux, int autogain) {
int rc=1;
uint16_t fs, ir, hi, lo;
//tsl2561Gain_t old_gain;
if(sensor->adapter_fd == -1) {
// TODO: choose a valid errno error
sensor->lasterr = -1;
return -1;
}
if (autogain == 0) { // autogain not requested. Executing a single sensor read
rc = tsl2561_getdata(sensor, full_spectrum, infrared);
*lux = TSL2561_CALCULATE_LUX(sensor, *full_spectrum, *infrared);
return rc;
}
// autogain requested
switch(sensor->integration_time) {
case TSL2561_INTEGRATIONTIME_13MS:
hi = TSL2561_AGC_THI_13MS;
lo = TSL2561_AGC_TLO_13MS;
break;
case TSL2561_INTEGRATIONTIME_101MS:
hi = TSL2561_AGC_THI_101MS;
lo = TSL2561_AGC_TLO_101MS;
break;
case TSL2561_INTEGRATIONTIME_402MS:
hi = TSL2561_AGC_THI_402MS;
lo = TSL2561_AGC_TLO_402MS;
break;
default:
hi = TSL2561_AGC_THI_402MS;
lo = TSL2561_AGC_TLO_402MS;
break;
}
// save the old gain
//old_gain = sensor->gain;
// try to adjust the gain
rc = tsl2561_getdata(sensor, &fs, &ir);
if(rc != 0) {
return -1; // invalid read or sensor error
}
if ((fs < lo) && (sensor->gain == TSL2561_GAIN_1X)) { // light too low with this gain
// raise the gain and redo the reading
TSL2561_SETGAIN(sensor, TSL2561_GAIN_16X);
//printf("gain raised\n");
rc = tsl2561_getdata(sensor, &fs, &ir);
// restore the previous gain
//TSL2561_SETGAIN(sensor, old_gain);
if(rc != 0) { // invalid read or sensor error
return -1;
} else {
// now consider the reading valid after being adjusted
*full_spectrum = fs;
*infrared = ir;
*lux = TSL2561_CALCULATE_LUX(sensor, *full_spectrum, *infrared);
return 0;
}
}
if ((fs > hi) && (sensor->gain == TSL2561_GAIN_16X)) { // light too high with this gain
// lower the gain and redo the reading
TSL2561_SETGAIN(sensor, TSL2561_GAIN_1X);
//printf("gain lowered\n");
rc = tsl2561_getdata(sensor, &fs, &ir);
// restore the previous gain
//TSL2561_SETGAIN(sensor, old_gain);
if(rc != 0) { // invalid read or sensor error
return -1;
} else {
// now consider the reading valid after being adjusted
*full_spectrum = fs;
*infrared = ir;
*lux = TSL2561_CALCULATE_LUX(sensor, *full_spectrum, *infrared);
return 0;
}
}
// the reading was valid without gain adjustment (or chip limits encountered!)
*full_spectrum = fs;
*infrared = ir;
*lux = TSL2561_CALCULATE_LUX(sensor, *full_spectrum, *infrared);
return 0;
}