Initial commit

This commit is contained in:
Daniel Kluge 2023-05-24 14:57:19 +02:00
commit 345412c33b
7 changed files with 286 additions and 0 deletions

5
.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

10
.vscode/extensions.json vendored Normal file
View File

@ -0,0 +1,10 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

39
include/README Normal file
View File

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

46
lib/README Normal file
View File

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

17
platformio.ini Normal file
View File

@ -0,0 +1,17 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:teensylc]
platform = teensy
board = teensylc
framework = arduino
lib_deps =
thomasfredericks/Bounce2@^2.71
build_flags = -D USB_MIDI -D TEENSY_OPT_FASTEST

158
src/main.cpp Normal file
View File

@ -0,0 +1,158 @@
#include <Arduino.h>
#include <Bounce2.h>
#define MIDI_NAME {'P', 'i', 'n', 'g', 'b', 'o', 'a', 'r', 'd'}
#define MIDI_NAME_LEN 9
#define CHECK_PINS 9
#define KEY_PINS 6
#define BOUNCE_TIME 5
#define POWER_SUPPLY_CHECK_PIN 13
#define NUMBER_OF_KEYS 49
#define SELF_DRIVE_INTERVAL 100
Bounce check_pins[CHECK_PINS] {
{14, BOUNCE_TIME}, // not KEYS1..6
{15, BOUNCE_TIME}, // not KEYS7..12
{16, BOUNCE_TIME}, // not KEYS13..18
{17, BOUNCE_TIME}, // not KEYS19..24
{18, BOUNCE_TIME}, // not KEYS25..30
{19, BOUNCE_TIME}, // not KEYS31..36
{20, BOUNCE_TIME}, // not KEYS37..42
{21, BOUNCE_TIME}, // not KEYS43..48
{22, BOUNCE_TIME} // not KEYS49
};
// not KEY0%6..not KEY5%6
const unsigned char key_pins[KEY_PINS] {2, 3, 4, 5, 6, 7};
// Array of pressed keys (initially all 0)
bool keys_pressed[NUMBER_OF_KEYS];
// K1, K2, K3, K4, K5, K12, K13, K14, K15
const unsigned char self_drive_pins[CHECK_PINS] {8, 9, 10, 11, 12, 26, 23, 24, 25};
volatile unsigned char curr_self_drive_pin = 0;
IntervalTimer self_drive_timer = IntervalTimer();
// Map the current array and pressed key to a MIDI note
unsigned char mapToMidi(char curr_arr, char key) {
unsigned char offset = (curr_arr >> 1) * 12;
// TODO: maybe we have to switch the notes and array offsets
// Uneven offset are the upper octave, even the lower
if (curr_arr & 1) {
switch (key) {
case 0: return offset + 42; // F#2 + offset
case 1: return offset + 43; // G2 + offset
case 2: return offset + 44; // G#2 + offset
case 3: return offset + 45; // A2 + offset
case 4: return offset + 46; // A#2 + offset
case 5: return offset + 47; // B2 + offset
}
} else {
switch (key) {
case 0: return offset + 36; // C2 + offset
case 1: return offset + 37; // C#2 + offset
case 2: return offset + 38; // D2 + offset
case 3: return offset + 39; // D#2 + offset
case 4: return offset + 40; // E2 + offset
case 5: return offset + 41; // F2 + offset
}
}
// We hopefully never get here
return 0;
}
// Check if any of the array pins fell since last time
char findCurrentArrPin() {
for (unsigned char i = 0; i < CHECK_PINS; i++) {
// Update status
check_pins[i].update();
// Check if the pin fell or is low
// ! inverted
if (check_pins[i].fell()) return i;
}
// If none fell we should have enough time to see which one is low
for (unsigned char i = 0; i < CHECK_PINS; i++) {
if (check_pins[i].read() == LOW) return i;
}
// Default return
return -1;
}
// Set the next self drive pin
void nextSelfDrivePin() {
// Set the current pin to high
digitalWriteFast(self_drive_pins[curr_self_drive_pin], HIGH);
// Set the next pin
curr_self_drive_pin = (curr_self_drive_pin + 1) % CHECK_PINS;
}
// Interrupt for power supply check
void powerStateChanged() {
unsigned char state = digitalReadFast(POWER_SUPPLY_CHECK_PIN);
// ! inverted
if (state == LOW) {
curr_self_drive_pin = 0;
self_drive_timer.begin(nextSelfDrivePin, SELF_DRIVE_INTERVAL);
} else {
self_drive_timer.end();
}
}
// Initial start function
void setup() {
// Set all in- and outputs
for (unsigned char i = 0; i < CHECK_PINS; i++) {
pinMode(check_pins[i].getPin(), INPUT);
pinMode(self_drive_pins[i], INPUT);
}
for (unsigned char i = 0; i < KEY_PINS; i++) {
pinMode(key_pins[i], INPUT);
}
pinMode(POWER_SUPPLY_CHECK_PIN, INPUT);
// Manual call, so we can set the initial state
powerStateChanged();
// Setup interrupt for power supply
attachInterrupt(POWER_SUPPLY_CHECK_PIN, []() { while (true); }, CHANGE);
}
// Main loop
void loop() {
// Find active arr pin
char curr_arr = findCurrentArrPin();
// If none is active, we do nothing, else we check the keys
if (curr_arr >= 0) {
// Get all the key values ans send the MIDI message if needed
unsigned char value;
for (unsigned char i = 0; i < KEY_PINS; i++) {
value = digitalReadFast(key_pins[i]);
// If the key is pressed, we send a MIDI message and set the entry in the array
// ! inverted
if (value == LOW) {
// Check if the key is not already pressed
if (keys_pressed[curr_arr * 6 + i] == 0) {
// Send MIDI message
usbMIDI.sendNoteOn(mapToMidi(curr_arr, i), 127, 1);
// Set the entry in the array
keys_pressed[curr_arr * 6 + i] = 1;
}
} else {
// Check if the key is not already released
if (keys_pressed[curr_arr * 6 + i] == 1) {
// Send MIDI message
usbMIDI.sendNoteOff(mapToMidi(curr_arr, i), 0, 1);
// Set the entry in the array
keys_pressed[curr_arr * 6 + i] = 0;
}
}
}
}
// MIDI Controllers should discard incoming MIDI messages.
while (usbMIDI.read()) {
}
}

11
test/README Normal file
View File

@ -0,0 +1,11 @@
This directory is intended for PlatformIO Test Runner and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/en/latest/advanced/unit-testing/index.html